Anlage: 2

WASSERRECHTSVERFAHREN

15. April 2025

HYDRAULISCHE BERECHNUNG

Vorhaben: ANTRAG AUF EINLEITEN VON BEHANDELTEM

ABWASSER AUS DER KLÄRANLAGE PERKAM

UND VON MISCHWASSER IN DIE KLEINE LABER

Vorhabensträger: GEMEINDE PERKAM

VG RAIN

vertreten durch:

1. Bürgermeister Hubert Ammer

Schloßplatz 2 94369 Rain

Entwurfsverfasser: KEB BAUPLANUNGS GMBH

Hirschberger Ring 10 94315 Straubing

Entwurfsverfasser:

H Straubing 94315 Straubing/ Tel.: 0942 1/830 9390 Suplanum

Hirschberger king 10 KEB 94315 Straubing Tel.: 09421/33093 Suplanung GmbH Straubing info@keb/bauplanung.de

KEB Bayplanungs GmbH

KEB Bauplanungs GmbH Straubing, 15. April 2025

Vorhabensträger:

Gemeinde Perkam,

2 0. Mai 2025

Hubert Ammer Erster Bürgermeister

WASSERRECHTSVERFAHREN "Neubau Kläranlage Perkam"

Gemeinde Perkam

INHALTSVERZEICHNIS

1	Hyr	aulische Berechnung der Kläranlage	2
	1.1	Dükerleitungen	2
	1.2	Überfallwehr	6
2	Ben	nessung der Kläranlagenteile	6
	2.1	Abwassermengen – Schmutzfrachten	7
	2.2	Belebungsanlage – Nachklärbecken	8
	2.3	Bemessung RLS-Pumpwerk	14
	2.4	Bemessung Prozesswasserpumpwerk	19
	2.5	Bemessung Schraubengebläse und Belüfterplatten	24
	2.6	Bemessung Schlammanfall	27

© KEB 2025 Seite 1 von 28

HYRAULISCHE BERECHNUNG DER KLÄRANLAGE

1.1 DÜKERLEITUNGEN

Die Bemessung der Dükerleitungen erfolgt in Anlehnung an das ATV Arbeitsblatt A112.

Zulaufleitung Be	elebungs	becken -	– Nachk	lärbecker	1
Regenwetterabfluss Q _M				90	[m³/h]
Rücklaufschlamm Q _{RS} 1,00 x	90 m³/h			90	[m³/h]
Profilhöhe DN				350	[mm]
Querschnittsfläche A				0,0962	[m ²]
Geschwindigkeit $v = Q/A$				0,26	[m/s]
Erf. Gefälle I _s				0,01	
L Abwicklung =				17,0	[m]
Hydraulische Verluste	Ver- lust- beiwert ζ	Anzahl		Verlusthö	he
Umlenkverluste:					
Eintrittsverlust	0,45	1	0,45	* v ² / 2g	
Krümmer 45	0,15			* v ² / 2g	
Krümmer 90	0,5	2	1,00	* v ² / 2g	
Geschwindigkeitshöhe:			1,00	$* v^2 / 2g$	
Summe			2,45	* v² / 2g	0,008 m
Reibungsverluste = L*I _s					0,170 m
Gesamtverlusthöhe					0,178 m

Gewählt wurde ein Höhenunterschied zwischen Wasserspiegel Belebungsbecken und Wasserspiegel Nachklärbecken von 20 cm.

WSP-Höhe Nachklärbecken 333,15 m ü. NHN

WSP-Höhe Belebungsbecken 333,35 m ü. NHN

© KEB 2025 Seite 2 von 28

Zulaufleitung Kompak	ctanlage	– Belebu	ungsbec	ken (Vors	chacht)
Regenwetterabfluss Q _M				90	[m³/h]
Rücklaufschlamm Q _{RS}				90	[m³/h]
Profilhöhe DN				300	[mm]
Querschnittsfläche A				0,0707	[m ²]
Geschwindigkeit $v = Q/A$				0,35	[m/s]
Erf. Gefälle I _s				0,01	
L Abwicklung =				16	[m]
Hydraulische Verluste	Ver- lust- beiwert	Anzahl		Verlusthö	he
Umlenkverluste:					
Eintrittsverlust	0,45	1	0,45	* v ² / 2g	
Krümmer 45	0,15			$* v^2 / 2g$	
Krümmer 90	0,5	3	1,50	$* v^2 / 2g$	
Geschwindigkeitshöhe:			1,00	* v ² / 2g	
Summe			2,95	* v ² / 2g	0,072 m
Reibungsverluste = L*I _s			-		0,160 m
Gesamtverlusthöhe					0,232 m

Addiert man die ermittelten Verlusthöhen zum maximalen Wasserspiegel (333,395 m ü. NHN) im Zulaufschacht des Belebungsbeckens erhält man einen Wasserspiegel von 333,627 m ü. NHN.

Die Sohle vom Auslauf der Kompaktanlage liegt bei 334,24 m ü. NHN. Somit ist durch die gewählte Anordnung der Kompaktanlage (oberirdische Aufstellung von Rechen und Sandfang) ein Rückstau in die Kompaktanlage nicht möglich. Ein freier Abfluss in Richtung Dükerleitung wird gewährleistet.

© KEB 2025 Seite 3 von 28

	Mess	schacht			
Regenwetterabfluss Q _M				90	[m ³ /h]
Profilhöhe DN				200	[mm]
Querschnittsfläche A				0,0314	[m ²]
Geschwindigkeit v = Q/A				0,796	[m/s]
Erf. Gefälle I _s				0,01	
L Abwicklung =				5,0	[m]
Hydraulische Verluste	Ver- lust- beiwert ζ	Anzahl		Verlusthö	he
Umlenkverluste:					
Eintrittsverlust	0,45			$* v^2 / 2g$	
Krümmer 45	0,15	2	0,30	$* v^2 / 2g$	
Krümmer 90	0,5	1	0,50	$* v^2 / 2g$	
Geschwindigkeitshöhe:			1,00	$* v^2 / 2g$	
Summe			1,80	* v ² / 2g	0,058 m
Reibungsverluste = L*I _s					0,050 m
Gesamtverlusthöhe					0,108 m

Der errechnete Höhenunterschied zwischen Einlauf und Auslauf Messschacht beträgt demnach ca. 11 cm.

© KEB 2025 Seite 4 von 28

Zulaufleitung Rü	cklaufpu	mpwerk	– Nach	klärbecke	n
Rücklaufschlamm Q _{RS}				90	[m ³ /h]
Profilhöhe DN				184	[mm]
Querschnittsfläche A				0,0266	[m ²]
Geschwindigkeit v = Q/A				0,940	[m/s]
Erf. Gefälle Is				0,005	
L Abwicklung =				27	[m]
Hydraulische Verluste	Ver- lust- beiwert ζ	Anzahl		Verlusthö	he
Umlenkverluste:					
Eintrittsverlust	0,45	1	0,45	$* v^2 / 2g$	
Krümmer 45	0,15	4	0,60	$* v^2 / 2g$	
Krümmer 90	0,5	1	0,50	* v ² / 2g	
Geschwindigkeitshöhe:			1,00	$* v^2 / 2g$	
Summe			2,55	* v ² / 2g	0,115 m
Reibungsverluste = L*I _s					0,027 m
Gesamtverlusthöhe		·	·		0,142 m

Demnach errechnet sich folgende Wasserspiegelhöhe im Zulauf (Ansaugrohr) des Rücklaufschlammpumpwerkes:

Wasserspiegelhöhe Rücklaufpumpwerk 333,01 m ü. NHN

Da die Oberkante der geplanten Aufstellfläche der Rücklaufschlammpumpen (Sockel) bei 332,65 m ü. NHN liegt, sollte die ankommende Rücklaufschlammleitung eine Vollfüllung im Zulauf der Pumpen vorweisen. Es ist darauf zu achten, dass Pumpen mit niedriger Bauhöhe verbaut werden. Duch den NPSH-Wert der Pumpen kann zudem von einer leichten Sogwirkung in der Dükerleitung ausgegangen werden.

© KEB 2025 Seite **5** von **28**

1.2 ÜBERFALLWEHR

Der Mischwasserzufluss ins Belebungsbecken wird über eine im Zulaufschacht des Kombibeckens angeordnete Überfallschwelle eingestaut.

Mischwasserabfluss Q _M	90	[m³/h]
Überfallbreite b	1,50	[m]
Überfallbeiwert μ	0,60	[]
Überfallhöhe h = $(Q_M / (2/3\mu * b \sqrt{2g}))^{2/3}$	0,045	[m]

Die Höhe der Überfallkante errechnet sich somit zu: Der maximale Wasserspiegel im Zulaufschacht des Belebungsbeckens erreicht somit:

WSP BB
$$333,35 + 0,045 =$$

333,395 m ü. NHN

Die weiteren maximalen Wasserspiegel in den drei Kaskaden des Belebungsbeckens, sowie im Ablaufschacht der Belebung in Richtung Nachklärung, werden von der Höhe der Überfallschwelle in den Ablaufschacht bestimmt. Diese wird baulich auf eine Höhe von 333,30 m ü. NHN festgelegt.

2 BEMESSUNG DER KLÄRANLAGENTEILE

In folgendem Kapitel werden die einzelnen Kläranlagenteile bemessen.

© KEB 2025 Seite 6 von 28

2.1 ABWASSERMENGEN – SCHMUTZFRACHTEN

Auswertung der Betriebsdaten aus den Monatsberichten Januar 2021 bis Dezember 2023 - Übersicht

	Zulauf Q _{d,max,TW} [m³/d]	BSB₅-Fracht [kg/d]	CSB-Fracht [kg/d]	P _{ges} -Fracht [kg/d]	GesN-Fracht [kg/d]	NH4-N-Fracht [kg/d] *)
Mittelwert	491	86	192	2,67	22	
50%-Wert	489	74	165	2,33	20	
85%-Wert	562	119	259	3,67	27	
		EW (60)	EW (120)	EW (1,8)	EW (11)	EW (8)
Mittelwert		1.425	1.599	1.535	1.962	
50%-Wert		1.227	1.375	1.362	1.804	
85%-Wert		1.990	2.155	2.004	2.436	

Prognosefaktor: 1,16 Bei allen Bemessungswerten wurde ein Prognosefaktor berücksichtigt.

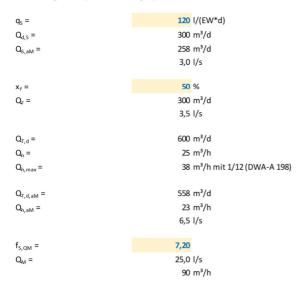
Umrechnungsfaktor: 1,44 Hochrechnung von NH4-N-Werten auf N_{ges} -Wert.

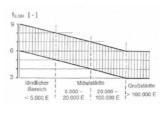
Ausbaugröße (IST): 1.700 EW
Belastung (IST): 2.150 EW

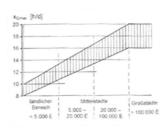
tatsächliche Einwohner (2023): 1.640 EZ
Ausbaugröße (Prognose): 2.500 EW

Bemessungswerte (auf die Betriebsdatenauswertung bezogen; Schmutzfrachten):

Zulauf Q _d	BSB _s -Fracht	CSB-Fracht	P _{ges} -Fracht	N _{ges} -Fracht	NH ₄ -N-Fracht	AFS-Fracht
[m³/d]	[kg/d]	[kg/d]	[kg/d]	[kg/d]	[kg/d]	[kg/d] *)
600	138	259	4,3	31	0	


^{*)} Die AFS-Fracht wurde mit der spezifischen Fracht von 70 g/(Ew*d) abgschätzt.


Bemessungswerte (Vergleichswerte Fracht bei 2.500 EW Ausbaugröße; nach Standardwerten DWA-A 131):


Zulauf Q _d	BSB _s -Fracht	CSB-Fracht	P _{ges} -Fracht	N _{ges} -Fracht	NH ₄ -N-Fracht	AFS-Fracht
[m³/d]	[kg/d]	[kg/d]	[kg/d]	[kg/d]	[kg/d]	[kg/d] *)
600	150	300	4,5	28	20	175

^{*)} Die AFS-Fracht wurde mit der spezifischen Fracht von 70 g/(Ew*d) abgschätzt.

Bemessungswerte (Abwassermengen):

© KEB 2025 Seite 7 von 28

2.2 BELEBUNGSANLAGE – NACHKLÄRBECKEN

Die Bemessung der Belebungsanlage und des Nachklärbeckens wurde mit dem Programm Belebungs-Expert Version 3.03 + des bayerischen Landesamtes für Umwelt durchgeführt. Die Berechnung erfolgt nach dem Arbeitsblatt DWA-A 131 (2016).

DWA-Regelwerk

Belebungs-Expert Berechnung von einstufigen Belebungsanlagen nach dem DWA-Arbeitsblatt A131(2016)

Projekt: Neubau Kläranlage Perkam (2.500 EW)

bearbeitet von: LT berechnet am: 15.04.2025

Anlagenkonfiguration:

Belebungsbecken

Nachklärung

Reinigungsziele:

- O Abbau des org. Kohlenstoffs
- Nitrifikation
- Denitrifikation
- Simultane aerobe Schlammstabilisierung
- Phosphor-Simultanfällung

Denitrifikationsverfahren: intermittierende Denitrifikation

Fällmittel: dreiwertiges Eisen

Nachklärung: Beckentyp Rundbecken, Strömung vertikal, Räumertyp Schildräumer

Lastannahmen:

Größenklasse: 300 kg CSB/d

Berechnete Lastfälle:

- O Lastfall 1: Bemessung
- Lastfall 3: Ermittlung des Sauerstoffbedarfs bei h\u00f6chster Temperatur
- O Lastfall 4: Sonderlastfall

	Lastfall	1	2	3	
Zulaufmenge:					
Abwassermenge	$Q_{d,Konz.}$	600	600	600 m ³ /d	
	Qt	38	38	38 m ³ /h	
Zulaufkonzentrationen:					
CSB	C _{CSB,ZB}	500	500	500 mg/l	
Gelöster CSB	S _{SCSB,ZB}	333	333	333 mg/l	
Abfiltrierbare Stoffe	X _{TS,ZB}	292	292	292 mg/l	
Kjeldahl-Stickstoff	C _{KN,ZB}	45,8	45,8	45,8 mg/l	
Ammoniumstickstoff	S _{NH4,ZB}	33,3	33,3	33,3 mg/l	
Nitratstickstoff	S _{NO3,ZB}	0,0	0,0	0,0 mg/l	
Phosphor	C _{P,ZB}	7,5	7,5	7,5 mg/l	
Säurekapazität	S _{KS,ZB}	8,00	8,00	8,00 mmol/l	
Zulauffrachten:					
CSB	B _{d,CSB}	300	300	300 kg/d	
Gelöster CSB	B _{d,SCSB}	200	200	200 kg/d	
Abfiltrierbare Stoffe	B _{d,XTS}	175	175	175 kg/d	
Kjeldahl-Stickstoff	$B_{d,KN}$	27,5	27,5	27,5 kg/d	
Ammoniumstickstoff	B _{d,NH4}	20,0	20,0	20,0 kg/d	
Nitratstickstoff	B _{d,NO3}	0,0	0,0	0,0 kg/d	
Phosphor	$B_{d,P}$	4,5	4,5	4,5 kg/d	

2025-04-15_Kombibecken 2500 EW_LT.gde

Belebungs-Expert Version 3.03 +

© KEB 2025 Seite 8 von 28

"Neubau Kläranlage Perkam"

Belebungsbecken, Bemessungs-Lastfall:		
Temperatur im Belebungsbecken	Т	12.0 Grad C
Stickstoffbilanz:		,.
Zulauf: C _{KN} + S _{NO3}	CN	45,8 mg/l
im Schlamm gebunden	X _{orgN,BM}	4,3 mg/l
Ammonium im Ablauf	S _{NH4,AN}	0,0 mg/l
organischer Stickstoff im Ablauf	S _{orgN,AN}	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3,N}	36,9 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3.AN}	2,0 mg/l
zu denitrifizierendes Nitrat	S _{NO3.D}	34,9 mg/l
Gewählter Denitrifikationsanteil	V _D /V _{BB}	0.41 -
vorhandene Denitrifikationskapazität	S _{NO3.D}	35,1 mg/l
denitrifiziertes Nitrat	S _{NO3,D}	35,1 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3.AN}	1,8 mg/l
Maximale Taktzeit	t _T	1,69 h
Phosphorelimination:	- 1	.,
Phosphor im Zulauf	C _{P,ZB}	7,5 mg/l
Im Schlamm gebunden (normale Aufnahme)	X _{P,BM}	2,5 mg/l
Im Schlamm gebunden (erhöhte Aufnahme)	X _{P,BioP}	0,0 mg/l
Phosphor im Ablauf (vorhanden)	Spo4.AN	2,0 mg/l
Phosphor im Ablauf (Sollwert)	SPO4.AN	2,0 mg/l
gefällter Phosphor	X _{P,Fäll}	3,0 mg/l
Fällmittel: Dreiwertiges Eisen	- ,	
Fällmittelbedarf	FM	4,9 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TSAB	4,41 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TSAB	2,80 kg/m ³
Schlammalter und Belastungskennwerte:		
Erforderliches Schlammalter	erf.t _{TS}	25,0 d
Erforderliches Volumen	V _{BB}	1198 m ³
Gewähltes Volumen	V _{BB}	1290 m ³
Vorhandenes Schlammalter	t _{TS}	27,2 d
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ÜS _{d,C}	120 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlamm aus biol. P-Elimination	ÜS _{d,BioP}	0 kg/d
Schlamm aus P-Fällung	ŪS _{d,F}	12 kg/d
Schlammproduktion gesamt	ÜSd	132 kg/d
Sauerstoffverbrauch:		
aus Kohlenstoffelimination	OV _{d,C}	196 kg/d
aus Nitrifikation	$OV_{d,N}$	95 kg/d
aus C-Elimination durch Denitrifikation	$OV_{d,D}$	-61 kg/d
Täglicher Sauerstoffverbrauch	OVd	230 kg/d
Stoßfaktor für C-Elimination	f _C	1,10 -
Stoßfaktor für Nitrifikation	fN	1,50 -
Maximaler stündl. Sauerstoffverbrauch	OVh	19,6 kg/h

2025-04-15_Kombibecken 2500 EW_LT.gde

Belebungs-Expert Version 3.03 +

© KEB 2025 Seite 9 von 28

WASSERRECHTSVERFAHREN "Neubau Kläranlage Perkam" Gemeinde Perkam

Säurekapazität:

Säurekapazität im Ablauf SKS_{AN} 5,14 mmol/l

"Neubau Kläranlage Perkam"

Femperatur im Belebungsbecken	Т	20.0 Grad C
Stickstoffbilanz:		20,0 0.00
Zulauf: C _{KN} + S _{NO3}	CN	45,8 mg/l
m Schlamm gebunden	X _{orgN,BM}	2,6 mg/l
Ammonium im Ablauf	S _{NH4} ,AN	0,0 mg/l
organischer Stickstoff im Ablauf	S _{orgN,AN}	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3.N}	38,4 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3,AN}	2,5 mg/l
u denitrifizierendes Nitrat	S _{NO3,AN}	35,9 mg/l
Gewählter Denitrifikationsanteil	-1100,0	
	V _D /V _{BB}	0,40 -
rorhandene Denitrifikationskapazität	S _{NO3,D}	36,2 mg/l
denitrifiziertes Nitrat	S _{NO3,D}	36,2 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	2,2 mg/l
Maximale Taktzeit	t _T	1,96 h
Phosphorelimination:		
Phosphor im Zulauf	СР, ZВ	7,5 mg/l
m Schlamm gebunden (normale Aufnahme)	X _{P,BM}	2,5 mg/l
m Schlamm gebunden (erhöhte Aufnahme)	$X_{P,BioP}$	0,0 mg/l
Phosphor im Ablauf (vorhanden)	Spo4,AN	2,0 mg/l
hosphor im Ablauf (Sollwert)	SP04,AN	2,0 mg/l
gefällter Phosphor	X _{P,Fäll}	3,0 mg/l
Fällmittel: Dreiwertiges Eisen		
Fällmittelbedarf	FM	4,9 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TS _{AB}	4,41 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TS _{AB}	2,70 kg/m ³
Schlammalter und Belastungskennwerte:		
/orhandenes Schlammalter	t _{TS}	28,1 d
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ŪS _{d,C}	112 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlamm aus biol. P-Elimination	US _{d,BioP}	0 kg/d
Schlamm aus P-Fällung	ÜS _{d,F}	12 kg/d
Schlammproduktion gesamt	ŪSd	124 kg/d
Sauerstoffverbrauch:		
aus Kohlenstoffelimination	$OV_{d,C}$	207 kg/d
aus Nitrifikation	$OV_{d,N}$	99 kg/d
aus C-Elimination durch Denitrifikation	$OV_{d,D}$	-63 kg/d
Fäglicher Sauerstoffverbrauch	OVd	243 kg/d
Stoßfaktor für C-Elimination	fc	1,10 -
Stoßfaktor für Nitrifikation	fN	1,50 -
Maximaler stündl. Sauerstoffverbrauch	OVh	20,3 kg/h
	OVh	20,3 kg/h

2025-04-15_Kombibecken 2500 EW_LT.gde

Belebungs-Expert Version 3.03 +

© KEB 2025 Seite 11 von 28

"Neubau Kläranlage Perkam"

tickstoffbilanz: CN 45.8 mg/l ulauf: CKN + SNO3 CN 45.8 mg/l n Schlamm gebunden XorgN,BM 50, 0mg/l mmonium im Ablauf SNH4,AN 0.0 mg/l rganischer Stickstoff im Ablauf (Sollwert) SNO3,N 36.3 mg/l itirat im Ablauf (Sollwert) SNO3,N 2.5 mg/l u denitrifizierendes Nitrat SNO3,D 33.8 mg/l ewählter Denitrifikationsanteil VpV/gB 0.41 - orbandene Denitrifikationskapazität SNO3,D 34.2 mg/l enitrifiziertes Nitrat SNO3,D 34.2 mg/l itaximale Taktzeit \$NO3,D 34.2 mg/l laximale Taktzeit \$NO3,D 34.2 mg/l laximale Taktzeit \$NO3,AN 2.1 mg/l laximale Taktzeit \$NO3,D 34.2 mg/l laximale Taktzeit \$NO3,D 34.2 mg/l laximale Taktzeit \$NO3,D 34.2 mg/l in Schlamm gebunden (normale Aufnahme) \$NEBop 7.5 mg/l in Schlamm gebunden (erhöhte Aufnahme) \$NEBop 2.5 mg/l in Schlamm gebunden	Belebungsbecken, Sonderlastfall Prozess: Temperatur im Belebungsbecken	т	10,0 Grad C
Valuati Ckn + Sno3	· · · · · · · · · · · · · · · · · · ·		10,0 Grad C
Schlamm gebunden XorgN,BM 5,0 mg/l mmonium im Ablauf SnH4,AN 0,0 mg/l regarischer Stickstoff im Ablauf SnH4,AN 2,0 mg/l triffizierter Stickstoff SNO3,N 36,3 mg/l triffizierter Stickstoff SNO3,N 2,5 mg/l u denitrifizierendes Nitrat SNO3,D 33,8 mg/l ewa/hitter Denitrifikationsanteil Vp/VgB 0,41 - Vp/VgB 0,41		Ou.	45.0 ma/l
mmonium im Ablauf SNH4AN 0,0 mg/l rganischer Stickstoff im Ablauf SorgNAN 2,0 mg/l trifizierter Stickstoff SNO3,N 36,3 mg/l trifizierter Stickstoff SNO3,N 36,3 mg/l u denitrifizierendes Nitrat SNO3,D 33,8 mg/l u denitrifizierendes Nitrat SNO3,D 33,8 mg/l wwählter Denitrifikationsanteil VD/VBB 0,41 - v			
rganischer Stickstoff im Ablauf scrgN.Am 2,0 mg/l tirfizierter Stickstoff SNo3,N 36,3 mg/l tirtat im Ablauf (Sollwert) SNo3,N 36,3 mg/l uewählter Denitrifikationsanteil VD/VBB 0,41 - orhandene Denitrifikationsanteil VD/VBB 0,41 - orhandene Denitrifikationsanteil VD/VBB 0,41 - orhandene Denitrifikationskapazität SNo3,D 34,2 mg/l elevählter Denitrifikationskapazität SNo3,D 34,2 mg/l elevählter Stickstoff SNO3,D 34,2 mg/l ittat im Ablauf (vorhanden) SNO3,AM 2,1 mg/l taximale Taktzeit SNO3,D 34,2 mg/l ittat im Ablauf (vorhanden) SNO3,AM 2,1 mg/l taximale Taktzeit SNO3,AM 2,1 mg/l taximale Taktzeit SNO3,AM 2,1 mg/l ittat im Ablauf (vorhanden) SNO3,AM 2,1 mg/l itaximale Taktzeit T, 1,94 h hosphorelimination: hosphor im Zulauf CP_ZB 7,5 mg/l in Schlamm gebunden (normale Aufnahme) XP_BMD 2,5 mg/l in Schlamm gebunden (erhöhte Aufnahme) XP_BMD 2,0 mg/l hosphor im Ablauf (vorhanden) SPO4,AM 2,0 mg/l hosphor im Ablauf (vorhanden) SPO4,AM 2,0 mg/l fälliter Phosphor XP_BMD 3,0 mg/l allmittel: Dreiwertiges Eisen allmittel: Dreiw			
tirfizierter Stickstoff SNO3,N 36,3 mg/l titrat im Ablauf (Sollwert) SNO3,AN 2,5 mg/l u denitrifizierendes Nitrat SNO3,D 33,8 mg/l tewählter Denitrifikationsanteil VD/VBB 0,41 - orhandene Denitrifikationskapazität SNO3,D 34,2 mg/l enitrifiziertes Nitrat SNO3,D 34,2 mg/l titrat im Ablauf (vorhanden) SNO3,AN 2,1 mg/l laximale Taktzeit ty 1,94 h hosphorimation: ty 1,94 h hosphorelimination: ty 2,5 mg/l n Schlamm gebunden (normale Aufnahme) XP,BM 2,5 mg/l n Schlamm gebunden (erhöhte Aufnahme) XP,BM 2,5 mg/l n Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l hosphor im Ablauf (Sollwert) SPO			
Itrat im Ablauf (Sollwert)			
			_
Working		S _{NO3,AN}	
orhandene Denitrifikationskapazität SNO3.D 34.2 mg/l enitrifiziertes Nitrat SNO3,D 34.2 mg/l litrat im Ablauf (vorhanden) SNO3,AN 2.1 mg/l laximale Taktzeit tr 1,94 h hosphorelimination: tr 1,94 h hosphorelimination: Tr 1,94 h n Schlamm gebunden (normale Aufnahme) XP,BM 2,5 mg/l n Schlamm gebunden (normale Aufnahme) XP,BM 2,5 mg/l n Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l n Sch	zu denitrifizierendes Nitrat	S _{NO3,D}	33,8 mg/l
### Senitrifiziertes Nitrat ### Ablauf (vorhanden) ### Aplauf (P.Z.B	Gewählter Denitrifikationsanteil	V _D /V _{BB}	0,41 -
itrat im Ablauf (vorhanden) SNO3,AN 2,1 mg/l laximale Taktzeit tT 1,94 h hosphorelimination: hosphorelimination: hosphor im Zulauf CP_ZB 7,5 mg/l n Schlamm gebunden (normale Aufnahme) XP,BioP 0,0 mg/l n Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l hosphor im Ablauf (Vorhanden) SPO4,AN 2,0 mg/l hosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l hosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l efällter Phosphor XP,Fäill 3,0 mg/l allmittelbedarf FM 4,9 kg Me/d chlammtrockensubstanz im Belebungsbecken: ulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,41 kg/m³ chlammtrockensubstanz im Ablauf BB TSAB 2,70 kg/m³ 2,70 kg/m³ chlammalter und Belastungskennwerte: TSAB 2,70 kg/m³ orhandenes Schlammalter tTS 25,5 d chlammmaus Kohlenstoffelimination USd,C 124 kg/d chlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d	vorhandene Denitrifikationskapazität	S _{NO3,D}	34,2 mg/l
Institute Inst	denitrifiziertes Nitrat	S _{NO3,D}	34,2 mg/l
hosphorelimination: CP_ZB 7,5 mg/l n Schlamm gebunden (normale Aufnahme) XP_BM 2,5 mg/l n Schlamm gebunden (erhöhte Aufnahme) XP_BioP 0,0 mg/l hosphor im Ablauf (vorhanden) SPO4_AN 2,0 mg/l hosphor im Ablauf (Sollwert) SPO4_AN 2,0 mg/l hosphor im Ablauf (Sollwert) SPO4_AN 2,0 mg/l hosphor im Ablauf (Sollwert) XP_Fall 3,0 mg/l allmittel: Dreiwertiges Eisen FM 4,9 kg Me/d allmittel: Dreiwertiges Eisen FM 4,9 kg Me/d chlammtrockensubstanz im Belebungsbecken: Ulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,41 kg/m³ chlammtrockensubstanz im Ablauf BB TSAB 2,70 kg/m³ chlammalter und Belastungskennwerte: tTS 25,5 d orhandenes Schlammalter tTS 25,5 d chlammproduktion: tTS 25,5 d chlammmaus Kohlenstoffelimination USd,c 124 kg/d chlamm aus externer C-Dosierung USd,ett 0 kg/d chlamm aus P-Fällung USd,ett 0 kg/d <td< td=""><td>Nitrat im Ablauf (vorhanden)</td><td>S_{NO3,AN}</td><td>2,1 mg/l</td></td<>	Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	2,1 mg/l
CP_ZB	Maximale Taktzeit	t _T	1,94 h
Schlamm gebunden (normale Aufnahme)	Phosphorelimination:		
Schlamm gebunden (normale Aufnahme)	Phosphor im Zulauf	C _{P.ZB}	7,5 mg/l
Schlamm gebunden (erhöhte Aufnahme)	Im Schlamm gebunden (normale Aufnahme)	. ,	-
hosphor im Ablauf (vorhanden) SPO4.AN 2,0 mg/l hosphor im Ablauf (Sollwert) SPO4.AN 2,0 mg/l efällter Phosphor XP,Fall 3,0 mg/l ällmittel: Dreiwertiges Eisen FM 4,9 kg Me/d chlammtrockensubstanz im Belebungsbecken: Ulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,41 kg/m³ ewählte Schlammtrockensubstanz im Ablauf BB TSAB 2,70 kg/m³ chlammalter und Belastungskennwerte: TSAB 2,70 kg/m³ orhandenes Schlammalter tTS 25,5 d chlamm aus Kohlenstoffelimination ÜSd,C 124 kg/d chlamm aus externer C-Dosierung ÜSd,ext 0 kg/d chlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d chlamm aus P-Fällung ÜSd,F 12 kg/d chlammproduktion gesamt ÜSd 136 kg/d auerstoffverbrauch: us Kohlenstoffelimination OVd,C 191 kg/d us Kohlenstoffelimination OVd,D -59 kg/d us Kohlenstoffverbrauch OVd 225 kg/d us Kohlenstoffverbrauch OVd 225 kg/d <	Im Schlamm gebunden (erhöhte Aufnahme)		0,0 mg/l
Sp04,AN 2,0 mg/l 3,0 mg/l			_
efällter Phosphor XP,Fall 3,0 mg/l 3,0 mg/l allmittel: Dreiwertiges Eisen allmittel: Dreiwertiges Eisen allmittelbedarf FM 4,9 kg Me/d chlammtrockensubstanz im Belebungsbecken: ulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,41 kg/m³ 2,70 kg/m³ chlammalter und Belastungskennwerte: orhandenes Schlammalter trund Belastungske			
allmittel: Dreiwertiges Eisen allmittelbedarf FM 4,9 kg Me/d chlammtrockensubstanz im Belebungsbecken: ulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,41 kg/m³ iewählte Schlammtrockensubstanz im Ablauf BB TSAB 2,70 kg/m³ chlammalter und Belastungskennwerte: orhandenes Schlammalter trund Belastungskennwerte: chlamm aus Kohlenstoffelimination ÜSd,c 124 kg/d chlamm aus Kohlenstoffelimination ÜSd,Biop 0 kg/d chlamm aus externer C-Dosierung ÜSd,ext 0 kg/d chlamm aus P-Fällung ÜSd,F 12 kg/d chlammproduktion gesamt ÜSd 136 kg/d auerstoffverbrauch: us Kohlenstoffelimination OVd,D 191 kg/d us Nitrifikation OVd,D -59 kg/d daglicher Sauerstoffverbrauch OVd 225 kg/d toßfaktor für C-Elimination fC 1,10 - toßfaktor für C-Elimination fN 1,50 - laximaler stündl. Sauerstoffverbrauch			_
allmittelbedarf FM 4,9 kg Me/d chlammtrockensubstanz im Belebungsbecken: ulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,41 kg/m³ sewählte Schlammtrockensubstanz im Ablauf BB TSAB 2,70 kg/m³ sewählte Schlammtrockensubstanz im Ablauf BB TSAB 2,70 kg/m³ sewählte Schlammtrockensubstanz im Ablauf BB TSAB 2,70 kg/m³ schlammalter und Belastungskennwerte: orhandenes Schlammalter type 25,5 d chlammproduktion: chlamm aus Kohlenstoffelimination USd,C 124 kg/d chlamm aus externer C-Dosierung USd,ext 0 kg/d chlamm aus externer C-Dosierung USd,E 12 kg/d chlamm aus P-Fällung USd,F 12 kg/d chlammproduktion gesamt USd 136 kg/d auerstoffverbrauch: us Kohlenstoffelimination UVd,C 191 kg/d us Nitrifikation UVd,D -59 kg/d dus Nitrifikation UVd,D -59 kg/d düglicher Sauerstoffverbrauch UVd,D -59 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für C-Elimination fn N 1,50 - laximaler stündl. Sauerstoffverbrauch öven 19,2 kg/h äurekapazität:	-		0,0g.
chlammtrockensubstanz im Belebungsbecken: ulässige Schlammtrockensubstanz im Ablauf BB rewählte Schlammtrockensubstanz im Altauf Ba reps Schlammtrockensubstanz im Altauf Ba reps Schlammtrockensubstanz im Altauf Ba reps Schlammtrockensubstanz in Altauf Ba reps Schlammtrockensubstanz in Altauf Ba reps Schlammtrockensubstanz in Altauf Ba	Fällmittelbedarf	FM	4.9 kg Me/d
ulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,41 kg/m³ iewählte Schlammtrockensubstanz im Ablauf BB TSAB 2,70 kg/m³ iewählte Schlammalter und Belastungskennwerte: orhandenes Schlammalter trs 25,5 d chlammproduktion: chlamm aus Kohlenstoffelimination Chlamm aus externer C-Dosierung Chlamm aus externer C-Dosierung Chlamm aus biol. P-Elimination Chlamm aus biol. P-Elimination Chlamm aus P-Fällung Chlamm aus P-Fällung Chlamm aus P-Fällung Chlammproduktion gesamt Chlammproduktion gesamt Chlammproduktion Gesamt Chlammproduktion Gesamt Chlammproduktion Gesamt Chlammproduktion Gesamt Chlamproduktion Gesamt Chlamproduktion GVd, 191 kg/d Chlamproduktion GVd, 191 kg/d Chlamproduktion GVd, 191 kg/d Chlamproduktion GVd, 192 kg/d Chlamproduktion GVd, 192 kg/d Chlamproduktion GVd, 193 kg/d Chlamproduktion GVd, 194 kg/d Chlamproduktion GVd, 195 kg/d Chlamproduktion GVd, 196 kg/d Chlamproduktion GVd, 196 kg/d Chlamproduktion GVd, 196 kg/d Chlamproduktion GVd,			1,0 119 111010
rewählte Schlammtrockensubstanz im Ablauf BB chlammalter und Belastungskennwerte: orhandenes Schlammalter chlammproduktion: chlamm aus Kohlenstoffelimination chlamm aus externer C-Dosierung chlamm aus biol. P-Elimination chlamm aus P-Fällung chlamm produktion gesamt chlamm für die Gregorie Gregori Gregorie Gregorie Gregori Gregorie Gregorie Gregori Gregorie Gre		TSAR	4.41 kg/m ³
chlammalter und Belastungskennwerte: orhandenes Schlammalter chlammproduktion: chlamm aus Kohlenstoffelimination chlamm aus externer C-Dosierung chlamm aus biol. P-Elimination chlamm aus P-Fällung chlamm aus P-Fällung chlamm produktion gesamt chlammproduktion gesamt disamproduktion gesamt suerstoffverbrauch: us Kohlenstoffelimination OVd,C 191 kg/d us Nitrifikation OVd,N 94 kg/d us C-Elimination durch Denitrifikation OVd,D -59 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation OVh 19,2 kg/h äurekapazität:	_	7.00	
trs 25,5 d chlammproduktion: chlamm aus Kohlenstoffelimination chlamm aus externer C-Dosierung chlamm aus externer C-Dosierung chlamm aus biol. P-Elimination chlamm aus P-Fällung chlamm aus P-Fällung chlamm produktion gesamt chlammproduktion gesamt chlammproduktion gesamt in Sd,F in 12 kg/d in 136 kg/d auerstoffverbrauch: aus Kohlenstoffelimination ovd,C us Kohlenstoffelimination ovd,N in 94 kg/d us C-Elimination durch Denitrifikation ovd,D in 59 kg/d in 1,10 - toßfaktor für C-Elimination for 1,10 - toßfaktor für Nitrifikation ovd, N in 1,50 - laximaler stündl. Sauerstoffverbrauch		TOAB	2,70 kg/111
chlamm aus Kohlenstoffelimination chlamm aus Kohlenstoffelimination chlamm aus externer C-Dosierung chlamm aus externer C-Dosierung chlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d chlamm aus P-Fällung chlamm aus P-Fällung chlammproduktion gesamt i USd,F 12 kg/d chlammproduktion gesamt i USd i 136 kg/d auerstoffverbrauch: us Kohlenstoffelimination oVd,C 191 kg/d us Nitrifikation oVd,N 94 kg/d us C-Elimination durch Denitrifikation oVd,D -59 kg/d āglicher Sauerstoffverbrauch oVd colsfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation fn 1,50 - laximaler stündl. Sauerstoffverbrauch oVh äurekapazität:	<u> </u>	tre	25.5.d
chlamm aus Kohlenstoffelimination chlamm aus externer C-Dosierung chlamm aus externer C-Dosierung chlamm aus biol. P-Elimination OSd,BioP Okg/d chlamm aus P-Fällung CSd,F 12 kg/d chlammproduktion gesamt OSd 136 kg/d auerstoffverbrauch: us Kohlenstoffelimination OVd,C 191 kg/d us Nitrifikation OVd,N 94 kg/d us C-Elimination durch Denitrifikation OVd,D -59 kg/d āglicher Sauerstoffverbrauch OVd 225 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation OVh 19,2 kg/h äurekapazität:		118	20,0 0
chlamm aus externer C-Dosierung chlamm aus biol. P-Elimination Clad, BioP Okg/d chlamm aus P-Fällung Clad, F C	-	DS.c	124 kg/d
chlamm aus biol. P-Elimination		-,-	
chlamm aus P-Fällung ÜS _{d,F} 12 kg/d chlammproduktion gesamt ÜS _d 136 kg/d auerstoffverbrauch: us Kohlenstoffelimination ÖV _{d,C} 191 kg/d us Nitrifikation ÖV _{d,N} 94 kg/d us C-Elimination durch Denitrifikation ÖV _{d,D} -59 kg/d äglicher Sauerstoffverbrauch ÖV _d 225 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation f _N 1,50 - laximaler stündl. Sauerstoffverbrauch ÖV _h 19,2 kg/h äurekapazität:	•		_
chlammproduktion gesamt ÜSd 136 kg/d auerstoffverbrauch: us Kohlenstoffelimination ÖVd,C 191 kg/d us Nitrifikation ÖVd,N 94 kg/d us C-Elimination durch Denitrifikation ÖVd,D -59 kg/d äglicher Sauerstoffverbrauch ÖVd 225 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation fN 1,50 - laximaler stündl. Sauerstoffverbrauch ÖVh 19,2 kg/h äurekapazität:			-
auerstoffverbrauch: us Kohlenstoffelimination OV _{d,C} 191 kg/d us Nitrifikation OV _{d,N} 94 kg/d us C-Elimination durch Denitrifikation OV _{d,D} -59 kg/d aglicher Sauerstoffverbrauch OV _d 225 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation f _N 1,50 - laximaler stündl. Sauerstoffverbrauch OV _h 19,2 kg/h äurekapazität:	_		_
us Kohlenstoffelimination OV _{d,C} 191 kg/d us Nitrifikation OV _{d,N} 94 kg/d us C-Elimination durch Denitrifikation OV _{d,D} -59 kg/d us C-Elimination durch Denitrifikation OV _{d,D} -59 kg/d āglicher Sauerstoffverbrauch OV _d 225 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation f _N 1,50 - laximaler stündl. Sauerstoffverbrauch OV _h 19,2 kg/h äurekapazität:	, ,	0.29	136 kg/d
us Nitrifikation OV _{d,N} 94 kg/d us C-Elimination durch Denitrifikation OV _{d,D} -59 kg/d äglicher Sauerstoffverbrauch OV _d 225 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation f _N 1,50 - laximaler stündl. Sauerstoffverbrauch OV _h 19,2 kg/h äurekapazität:		01/	101 1
us C-Elimination durch Denitrifikation OV _{d,D} -59 kg/d äglicher Sauerstoffverbrauch OV _d 225 kg/d toßfaktor für C-Elimination f _C 1,10 - toßfaktor für Nitrifikation f _N 1,50 - laximaler stündl. Sauerstoffverbrauch OV _h 19,2 kg/h äurekapazität:			-
äglicher Sauerstoffverbrauch OVd 225 kg/d toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation fn 1,50 - laximaler stündl. Sauerstoffverbrauch OVh 19,2 kg/h äurekapazität:			-
toßfaktor für C-Elimination fc 1,10 - toßfaktor für Nitrifikation f _N 1,50 - laximaler stündl. Sauerstoffverbrauch OV _h 19,2 kg/h äurekapazität:			-
toßfaktor für Nitrifikation f _N 1,50 - laximaler stündl. Sauerstoffverbrauch OV _h 19,2 kg/h äurekapazität:	•	_	
laximaler stündl. Sauerstoffverbrauch OV _h 19,2 kg/h äurekapazität:			
äurekapazität:	Stoßfaktor für Nitrifikation		
	Maximaler stündl. Sauerstoffverbrauch	OVh	19,2 kg/h
Surphanavität im Ablauf	Säurekapazität:		
aurekapazitat im Abiaur SKSAN 5,12 mmoin	Säurekapazität im Ablauf	SKSAN	5,12 mmol/l

2025-04-15_Kombibecken 2500 EW_LT.gde

Belebungs-Expert Version 3.03 +

© KEB 2025 Seite 12 von 28

"Neubau Kläranlage Perkam"

Nachklärung Beckentyp: Rundbecken Art der Durchströmung: vertikal	
Maßgebende Wassermenge Q _m	90 m ³ /h
Schlammindex, Eindickzeit, Rücklaufverhältnis:	
Schlammindex, gewählt ISV	100 l/kg
Eindickzeit des Schlammes, gewählt tE	2,0 h
Schlammtrockensubstanz an der Beckensohle TS _{BS}	12,6 kg/m ³
Gewähltes Verhältnis TSRs/TSBS	0.70 -
Schlammtrockensubstanz im Rücklaufschlamm TS _{RS}	8,8 kg/m ³
Rücklaufverhältnis bei RW, gewählt RV	1,00 -
Zulässige Schlammtrockensubstanz im Zulauf TS _{ZN}	4,41 kg/m ³
Gewählte Schlammtrockensubstanz im Zulauf TS _{ZN}	2,80 kg/m ³
Beckenoberfläche, Anzahl und Abmessungen:	
Zulässige Schlammvolumenbeschickung qSV	650 l/(m ² *h)
Zulässige Flächenbeschickung qA	2,00 m/h
Erf. Gesamt-Beckenoberfläche A _{NB}	45 m ²
Anzahl der Becken a	1
Erforderlicher Durchmesser D _{NB}	7,83 m
Gewählter Durchmesser D _{NB}	11,00 m
Durchmesser des Mittelbauwerks D _{MB}	2,00 m
Vorhandene Beckenoberfläche A _{NB}	92 m ²
Vorhandene Schlammvolumenbeschickung qSV	274 l/(m ² *h)
Vorhandene Flächenbeschickung qA	0,98 m/h
Beckentlefe:	
Klarwasserzone h ₁	1,84 m
Übergangs- und Pufferzone h23	1,86 m
Eindick- und Räumzone h4	0,87 m
Maßgebende Beckentiefe hges	4,57 m
Einlaufbauwerk:	
Tiefe des Einlaufs unter WSP h ₈	2,95 m
Volumen der Einlaufkammer V _E	3,0 m ³
Höhe des Einlaufschlitzes hSE	0,20 m
Querschnittsfläche des Zulauf(düker)s AZD	0,13 m ²
Eintrittsgeschwindigkeit in die Zulaufkammer VZD	0,38 m/s
Aufenthaltszeit in der Zulaufkammer t _{EB}	60 s
In die Zulaufkammer eingetragene Leistung PE	4 Nm/s
Turbulente Scherbeanspruchung G	31,5 1/s
Densimetrische Froude-Zahl Fro	1,081 -

2.3 BEMESSUNG RLS-PUMPWERK

Kunde:		Rif.:	
Angebot:	alt. A/00	Datum:	07.10.2024

Item	Beschreibung	Artikelpreis [€]	Menge	Gesamtpreis [€]
1	ELEKTROTAUCHMOTORPUMPEN FÜR ABWASSER			
1.1	KCW100LC+004061N3/2AEO [86403803000] UNTERWASSERPUMPE		2	
	Elektropumpe		2	
1.1.1	Abgeschirmten Kabeln		2	
1.1.2	Mit öl für horizontales Kühlsystem (O)		2	
1.1.3	Zwei Gleitringdichtungen SiC-SiC (E)		2	
1.2	Stützgestell horizontale Version trockenkammer [6202290] SOK100/N3 WAAGRECHTER FUß		2	

© KEB 2025 Seite 14 von 28

TECHNISCHES DATENBLATT

Kunde:				Rif.:			
Art.	81	Menge	1	Verlangte	25 Vs	Verlangte Förderhöhe	1 m
Тур	TAUCHMOTORPUMPE FÜR SCHMUTZWASSER			Modell	KCW100LC+004061N3/2AEO		

BETRIEBSGRENZEN				KONSTRUKTIONSEIGENSCHAFTEN				
Pumpmedium		Abwas	ser	Durchmesser Druckflansch	100	mm		
Höchsttemperatur Pumpmedium	4	0	"C	Typ Laufrad	Offen zur	ückgesetzt		
Max. Dichte	- 3	1	kg/dm³	Dichtung Pumpenseite	Gleitring	dichtung		
Max. Viskosität		1	mm²/s	Dichtung Motorseite	Gleitringdichtung			
Max. Feststoffgehalt		4	%	Installationstyp	Horizontal	SOK100/N3		
Max. Wasserspiegel	2	0	m	Trägheitsmoment	0,1067	1 Kgm²		
Höchstanzahl Anläufe pro Stunde		20		Betrieb	Dauerbe	trieb (S1)		
Max. Betriebszeit bei geschlossen Stutzen und Pumpe unter Wasser	:	3	min	GEWICHTE				
Mindesttauchtiefe	468	mm	S1	Gewicht Elektromotorpumpe	140,3	Kg		
Freier Durchlauf	10	00	mm	Installationsgewicht	34,5	Kg		

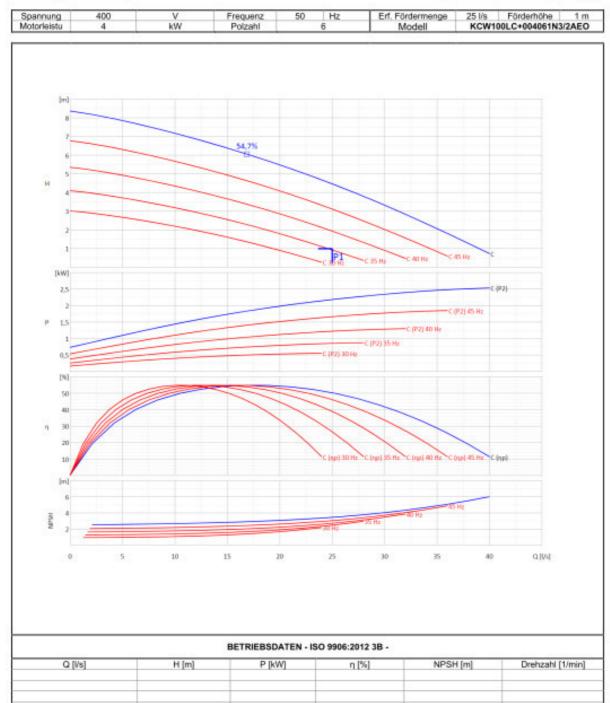
BETRIEBSEIGENSCHAFTEN ****						EIGENSCHAFTEN ELEKTROMOTOR				
Betriebsfördermenge		35.3 Vs		Marke	Marke		Cag	orari		
Betriebsför	rderhöhe	2 m		Modell			KC00406	1L132N3	3	
Qmin	Qmax	0	40	Vs	Nennle	stung		4	k	w.
H (Q=0)	Hmax (Qmin)	0	8,4	m	Nennfre	equenz		50	-	1z
Leistungsa	aufnahme Betriebspunkt	2	5	kW	Nennsp	annung	1	400		V
Max. Leist	ungsaufnahme	2	5	kW	Nenndr			970	1/1	min
n pumpe	n des Aggregates	27,87	21,59	%	Nennstrom		9		A	
Erforderlicher NPSH		4	9	m	Polzahl		6			
Drehzahl		97	70	1/min	Motortyp		3~			
Drehrichtung (*)			Rechtslau	ufrad	Wirkungsgrad 4/4-3/4-2/4 (**)		84,8 - 86,1 - 83,9 %		16	
Normgemä	iße Toleranz		ISO 9906:2	012 3B	Leistungsfaktor 4/4-3/4-2/4		0,755 - 0,665 - 0,515		15	
		In Fur	nktion	Standby	Isolationsklasse		Н			
Zahi instali	lierter Pumpen		1	0	Is/In Ts/Tn		5.8		-	
					Anlasst	VD				
					Schutzart			IP68		
					EX-ges	chützt		n.	n.a.	
					Thermoschutz		Klis	kon		
					Kabelty	p	Länge	NSSHOU-J	10	m
					Effizien			IE	3	
					Service		5)	50	1	

WERKSTOFFE PUMPE	****	WERKSTOFFE MOTOR	
Druckgehäuse	EN-GJL250	Flansch für Gleitringdichtung	EN-GJS400
Laufrad	EN-GJL250	Lagergehäuse	EN-GJL250
Mech. Dichtring pumpseitig	SIC/SIC/NBR	Kabelverschraubung	AISI 304 (1.4301)
Öltrennkammer	EN-GJL250	Motorgehäuse	EN-GJL250
Mech. Dichtring motorseitig	SIC/SIC/NBR	Stator	Elektroblech
Schrauben und Muttern	A4	Welle mit Läufer	Rostfreier edelstahl/Elektroblech
		Leitfähigkeitsaufnehmer	
		Ölschleuder	GRYVORY®
		Membran	S185 (1.0035)/NBR
		Griff	AISI 304 (1.4301)
		Rundes Speisekabel	
WERKSTOFFE ZUBEHÖR			
••••	****		
****	****		
****	****	0	

Anm.:	(*) Ansicht Saugseite; (**) Leistungsmaß nach Norm IEC60034-2-1						
	ANGEBOT Nr. alt. A/00	Pos. 81.1	Datum				

CAPRARS S.p.A. behit sich das Racht vor jedeszeit und ehre Vorbescheid Anderungen zur Verbessenung der eigenes Produkte vorzusehnen Indikative Leistungen und Ahmessungen. - Copyright 6 2016-3024 Capteri S.p.A. -All Rights
Reserved.

Seite. 2 / 5

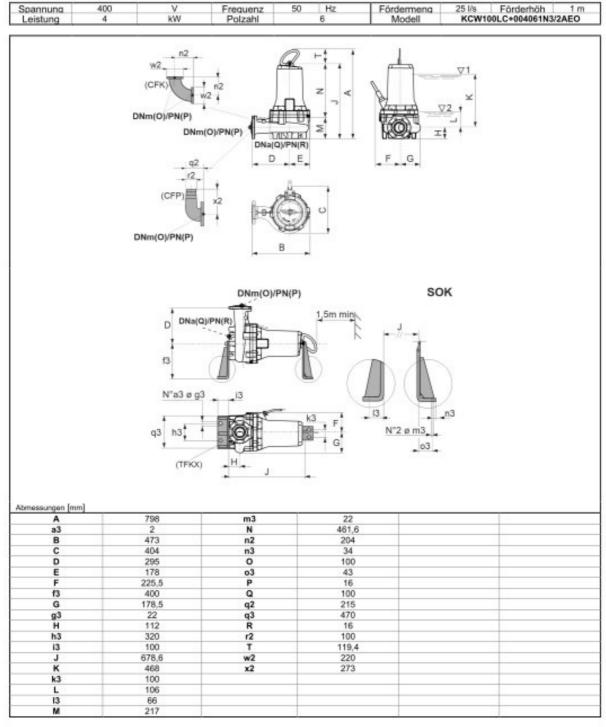

© KEB 2025 Seite 15 von 28

caprari

LEISTUNGSKURVEN

ANGEBOT Nr. alt. A/00	Pos. 81.1	Datum 07.10.2024
CAPRARI S.p.A. behält sich das Recht vor, jederzeit und sinne Vorbescheid Anderungen zur Verbesserung der eigenes	Produkte voczusehinen Indikative Leistungen und Abmessungen.	 Capyright © 2019-2024 Caprari S.p.A All Rights

Seite. 3 / 5

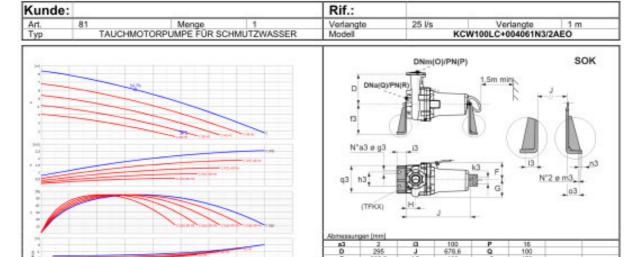

© KEB 2025 Seite 16 von 28

caprari

ABMESSUNGEN

ANCEROTAL -IL AIRO	Pos.	Datum
ANGEBOT Nr. alt. A/00	81.1	07.10.2024
		OT. TO.EGE T

Seite. 4 / 5


© KEB 2025 Seite 17 von 28

TECHNISCHES DATENBLATT

BETRIEBSDATEN - ISO 9906:2012 3B -					KONSTRUKTIONSEIGENSCHAFTEN					
Q [l/s]	H (m)	P [kW]	η [%]	NPSH [m]	Durchmesser Dr	uckflansch	100		mm	
			Typ Laufrad		Offe	Offen zurückgesetzt 0,10671 Kgm²				
		Trägheitsmoment	nt	0						
					Gewicht Insta	Installation	140.3	34.5	Kg	
					Dichtung	Motorseite	Gleitringdi	chtung	Gleitringdio	
		Installationstyp		Horizontal SOK100/	K100/N3					
				1	Betrieb		Dar	uerbetrieb	(S1)	

BETRIEBSGRENZEN	BETRIEBSEIGENSCHAFTEN							
Pumpmedium	Abwasser		Betriebsfördermenge		35.3		l/s	
Höchsttemperatur Pumpmedium	40	°C	Betriebsfö	orderhöhe		2		m
Max. Dichte	1	kg/dm³	H (Q=0)	Hmax (C	(min)	0	8,4	m
Max. Viskosität	1	mm²/s	Qmin	Qmax	19. 18	0	40	l/s
Max. Feststoffgehalt	4	%	Leistungs	aufnahme	Betriebspunkt	2.5		kW
Höchstanzahl Anläufe/Stunde		20	Max. Leis	tungsaufn	ahme	2,5		kW
Freier Durchlauf	100	mm	n Pumpe	n des Ag	gregates	27,87	21,5	96
Mindesttauchtiefe	468	mm	Drehricht			Re	chtslaufr	ad
WEDVOTOEEE EL EVIDONO	FORDUME	2570			*******	In Funktio	on	Stand-by
WERKSTOFFE ELEKTROMOT	ORPUMPE		Zahl installierter Pumpen		1		0	
Druckgehäuse	EN-GJL250		FIGENS	CHAETE	N EL EVTROA	MOTOR		
Laufrad	EN-GJL250		EIGENSCHAFTEN ELEKTROMOTOR					
Mech. Dichtring pumpseitig	SIC/SIC/NBR		Nennleistung		4		kW	
Flansch für Gleitringdichtung	EN-GJS400		Nennfrequenz		50		Hz	
Lagergehäuse	EN-GJL250		Nennspannung		400		V	
Öltrennkammer	EN-GJL250		Nennstrom		9		A	
Kabelverschraubung	AISI 304 (1.4301)	Polzahl	Drehza	ahl	6	970	1/min
Motorgehäuse	EN-GJL250	(c)	Motortyp				3 -	
Stator	Elektroblech		Wirkungsgrad 4/4-3/4-2/4 (**)		84,8 - 86,1 - 83,9 %		3,9 %	
Welle mit Läufer	Rostfreier edelsta	ahl/Elektroblech	Leistungsfaktor 4/4-3/4-2/4		0,755 - 0,665 -			
Leitfähigkeitsaufnehmer			Is/In Ts/Tn		5,8			
Ölschleuder	GRYVORY®		Thermoschutz			Klixon		
Mech. Dichtring motorseitig	SIC/SIC/NBR		Isolationsklasse		-3	H		
Rundes Speisekabel	-		Schutzart			IP68		
Schrauben und Muttern	A4		EX-gesch	ützt			n.a.	
			Speisekal	bel	Länge	NSSHOU-J	10	m
			Effizienzk		S.F.	IE3		1

Anm.: (*) Ansicht Saugseite; (**) Leistungsmaß nach Norm IEC60034-2-1					
	ANGEBOT Nr. alt. A/00	Pos. 81.1	Datum 07.10.2024		

Seite. 5 / 5

© KEB 2025 Seite 18 von 28

2.4 BEMESSUNG PROZESSWASSERPUMPWERK

Kunde:		Rif.:	
Angebot:	alt. A/00	Datum:	17.03.2025

Item	Beschreibung	Artikelpreis [€]	Menge	Gesamtpreis [€]
1	ELEKTROTAUCHMOTORPUMPEN FÜR ABWASSER EX-AUSFUHRUNG			
	KCW080HH+002941X3/2 [8644220000]			
1.1	UNTERWASSERPUMPE K ATEX II 2G EXDIIBT4			
	Elektropumpe			
1.1.1	Länge Speisekabel = 20 m (2)			
	Automatischer Kupplungsfußkrümmer BAKF-A 2" [620228]			
1.2	[DN80-PN16]			
	FUBSTÜCK			

© KEB 2025 Seite 19 von 28

TECHNISCHES DATENBLATT

Kunde:				Rif.:	1		
Art.	17	Menge	1	Verlangte	10 Vs	Verlangte Förderhöhe	8.5 m
Тур	TAUCHMOTORPUMPE FÜR SCHMUTZWASSER			Modell	KCW080HH+002941X3/2		

BETRIEBSGRENZEN				KONSTRUKTIONSEIGENSCHAFTEN			
Pumpmedium		Abwas	ser	Durchmesser Druckflansch	80	mm	
Höchsttemperatur Pumpmedium	4	0	"C	Typ Laufrad	Offen zurückgesetzt		
Max. Dichte	19	1	kg/dm ³	Dichtung Pumpenseite	Gleitrin	gdichtung	
Max. Viskosität	13	1	mm²/s	Dichtung Motorseite	Gleitrin	gdichtung	
Max. Feststoffgehalt		4	%	Installationstyp	Vertikal	BAKF-A 2	
Max. Wasserspiegel	2	0	m	Trägheitsmoment	0,03431 Kgm²		
Höchstanzahl Anläufe pro Stunde		20		Betrieb	Dauerbetrieb (S1)		
Max. Betriebszeit bei geschlossen Stutzen und Pumpe unter Wasser	,	3	min	GEWICHTE			
Mindesttauchtiefe	315	mm	S1	Gewicht Elektromotorpumpe	94,5	Kg	
Freier Durchlauf	80 mm		mm	Installationsgewicht	26	Kg	

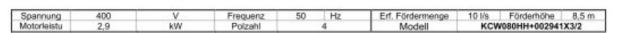
BETRIEE	SSEIGENSCHAFTEN			ansink.	EIGENSC	HAFTEN ELEKTRO	MOTOR	€s
Betriebsfö	rdermenge	11,4 Vs 9,1 m		Vs	Marke Modell		Caprari	
Betriebsför	rderhöhe			m			KC002941H112X3	
Qmin	Qmax	0	28,7	Vs	Nennleistur	ng	2,9	kW
H (Q=0)	Hmax (Qmin)	0	12,4	m	Nennfreque	enz	50	Hz
Leistungsa	aufnahme Betriebspunkt	1.	.9	kW	Nennspann	ung	400	V
Max. Leist	ungsaufnahme	2	4	kW	Nenndrehza	ahl	1440	1/min
n pumpe	n des Aggregates	52,19	43,22	%	Nennstrom		6,1	A
Erforderlicher NPSH		1	2	m	Polzahl		4	
Drehzahl		14	40	1/min	Motortyp		3~	
Drehrichtu	ng (*)		Rechtsla	ufrad	Wirkungsgrad 4/4-3/4-2/4 (**)		86,5 - 86,4 - 84,2 %	
	aße Toleranz		ISO 9906:2	012 3B	Leistungsfaktor 4/4-3/4-2/4		0,795 - 0,710 - 0,580	
	rata Barrara	In Funktion Standby		Isolationsklasse		Н		
Zahi instal	lierter Pumpen	125		0	Is/In Ts	s/Tn	6,6	
		100			Anlasstyp		1878	
					Schutzart		IPI	88
					EX-geschüf	tzt	ATEX II 2G	Exd IIB T4
					Thermosch	utz	Klis	on
					Kabeltyp	Länge	NSSHOU-J	20 m
					Effizienzkla	sse	IE	3
					Servicefakt	er	1	

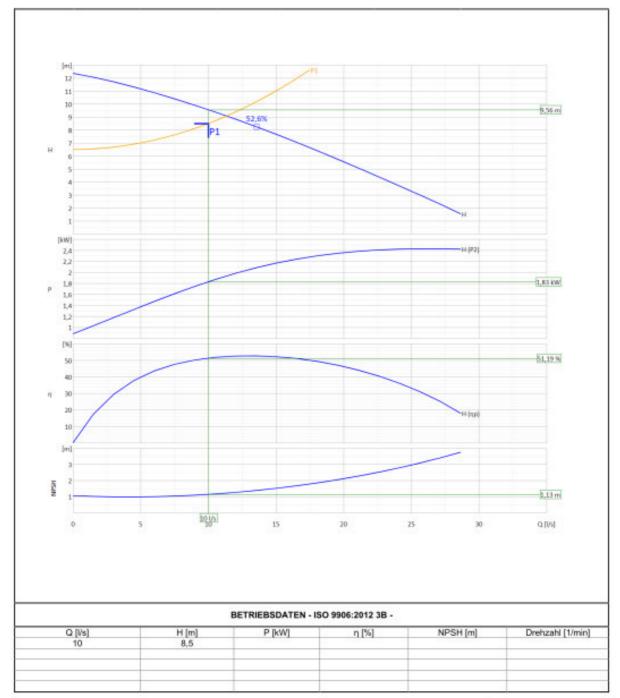
WERKSTOFFE PUMPE	en stocks	WERKSTOFFE MOTOR	Ex
Druckgehäuse	EN-GJL250	Flansch für Gleitringdichtung	EN-GJS400
Laufrad	EN-GJL250	Lagergehäuse	EN-GJL250
Mech. Dichtring pumpseitig	SIC/KERAMIK/NBR	Kabelverschraubung	AISI 304 (1.4301)
Öltrennkammer	EN-GJL250	Motorgehäuse	EN-GJL250
Mech. Dichtring motorseitig	Keramik/Grafit	Stator	Elektroblech
Schrauben und Muttern	A4	Welle mit Läufer	Rostfreier edelstahl/Elektroblech
		Leitfähigkeitsaufnehmer	
		Ölschleuder	GRYVORY®
		Flammendurchschlagsicherung	AISI304L (1.4306)
		Membran	S185 (1.0035)/NBR
		Griff	AISI 304 (1.4301)
		Rundes Speisekabel	
WERKSTOFFE ZUBEHÖR			
****	****	//	
****	****		
••••	****	0	
****	****	St.	

Anm.: (*) Ansicht Saugseite; (**) Leistungsmaß nach Norm IEC60034-2-1					
	ANGEBOT Nr. alt. A/00	Pos. 17.1	Datum 17.03.2025		

CAPRARI Sp.A. behilt sich das Racht vor jederzeit und dirne Vorbescheid Anderungen zur Verbessenung der eigenen Produkte vorzunehmen Indikative Leistungen und Ahmessungen. - Copylight © 2016-3024 Caprari S.p.A. - All R.

Seite. 2 / 5


© KEB 2025 Seite 20 von 28



LEISTUNGSKURVEN

	500	100
ANGEBOT Nr. alt. A/00	Pos. 17.1	Datum 17 03 2025
CURRENCE CO. L. LAND CO. C.	the Book Harrison with the buffer of the same and the same and	Constitute in State State Constitute in A. 14 Births

Seite. 3 / 5

© KEB 2025 Seite 21 von 28

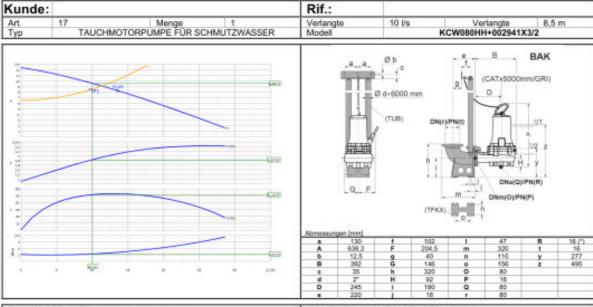
caprari

ABMESSUNGEN

	100 V 2,9 kW	Frequenz ! Polzahl	50 Hz F6	ordermeng 10 l/s Modell KCW08	Förderhöh 8,5 80HH+002941X3/2
	DNm(O)/PN(P) DNm(O)/PN(P)	m(O)/PN(P) DNa(Q)/PN	N(R)	∇1 ∇2 Σ1	
	Í	0 d ≤6000 mm	g (CATX5000	BAK mm/GRI)	
	14	(TUB) ON	DNa(Q)P	/PN(R)	
nessungen (mm)		G. F.	DNa(Q)	V2 z I/PN(R) N(P)	
а	130	G. F.	DNm(O)/P	I y I/PN(R) N(P)	217 277
a A	130 638,3	G. F.	DN::(Q) P	IPN(R) N(P)	277
A b	130 638,3 12,5	G. F.	DNa(Q)P	I y I/PN(R) N(P)	
A b B	130 638,3 12,5 392	G. F. (TFN	DNm(O)P	IPN(R) N(P)	277
A b B	130 638,3 12,5 392 35	K I L M M	DNa(Q) DNa(Q)P X) DNa(Q)P X) DNa(Q)P X X DNa(Q)P X DNa(Q)	IPN(R) N(P)	277
a A b B c	130 638,3 12,5 392 35 350,5	K I L M M n	DNm(O)IP ON 1 ON	IPN(R) N(P)	277
A b B c C	130 638,3 12,5 392 35 350,5	K I L M M N N	DNm(O)P DNm(O)P OX) DNm(O)P OX) 15 47 97 320 187 110 366	IPN(R) N(P)	277
A b B c C	130 638,3 12,5 392 35 350,5 2* 245	K I L m M n n n n n n n n n n n n n n n n n n	DNa(Q)PDN	IPN(R) N(P)	277
a A b B c C d	130 638,3 12,5 392 35 350,5 2" 245 220	K I L M M N N N N N N O O O	DNm(O)P 315 47 97 320 187 110 366 164 156	IPN(R) N(P) x2 y	277
a A b B c C d D E	130 638,3 12,5 392 35 350,5 2° 245 220	K I L M M N N N N O O	315 47 97 320 180 110 366 164 156 80	IPN(R) N(P) x2 y	277
a A b B C C d D e E f	130 638,3 12,5 392 35 35 350,5 2" 245 220 147	K I L m M N n n n n n n n n n n n n n n n n n n	DNm(O)P OX) OX OX OX OX OX OX OX OX O	IPN(R) N(P) x2 y	277
a A b B c C d D e E f	130 638,3 12,5 392 35 355,5 2° 245 220 147 102 204,5	K I L m M N n n n n n n n n n n n n n n n n n n	DNa(Q)P DNa(Q)P DNa(Q)P ON 1 ON	IPN(R) N(P) x2 y	277
a A b B c C d D e E f	130 638,3 12,5 392 35 350,5 2" 245 220 147 102 204,5	K I L M M N N N N O O O P Q Q Q Q Q C T	DNm(O)P DNm(O)P DNm(O)P 315 47 97 320 187 110 366 164 156 80 16 80	IPN(R) N(P) x2 y	277
a A B C C d D e E f F G G	130 638,3 12,5 392 35 350,5 2' 245 220 147 102 204,5 40	K I L M M N N N N N N N N N N N N N N N N N	DNm(O)P DNm(O)P DNm(O)P 315 47 97 320 187 110 366 164 156 80 16 80	IPN(R) N(P) x2 y	277
a A b B c C d D e E f	130 638,3 12,5 392 35 350,5 2° 245 220 147 102 204,5 40 146 320 92	K I L M M N N N N N N N N N N N N N N N N N	DNm(O)PP DNm(O)PP 315 47 97 320 187 110 366 164 156 80 16 80 16 17 18 18 18 18 18 18 18 18 18	IPN(R) N(P) x2 y	277
a A b B c C d D e E f F g G h	130 638,3 12.5 392 35 350,5 2" 245 220 147 102 204,5 40 146 320 92 180	K I L M N N N N N N N N N N N N N N N N N N	ON (O) P ON (O)	IPN(R) N(P) x2 y	277
a A b B c C d D e E f F g G h	130 638,3 12,5 392 35 350,5 2° 245 220 147 102 204,5 40 146 320 92	K I L m M N n n n N n n 2 o O P Q q 2 r R R r 2	DNm(O)PP DNm(O)PP 315 47 97 320 187 110 366 164 156 80 16 80 16 17 18 18 18 18 18 18 18 18 18	IPN(R) N(P) x2 y	277

ANGEBOT Nr. alt. A/00	Pos.	Datum
ANGEBOT Nr. alt A/00	17.1	17.03.2025
CAPRARI S.p.A. behät sich das Recht vor, jedesseit und dinse Vorbescheid Anderungen zur Verbessenung a	der eigenes Produkte vorzusehmen Indikative Leistungen und Abmessunge	rs Copyright © 2016-2024 Captari S.p.A All Rights.

Seite. 4 / 5


© KEB 2025 Seite 22 von 28

caprari

TECHNISCHES DATENBLATT

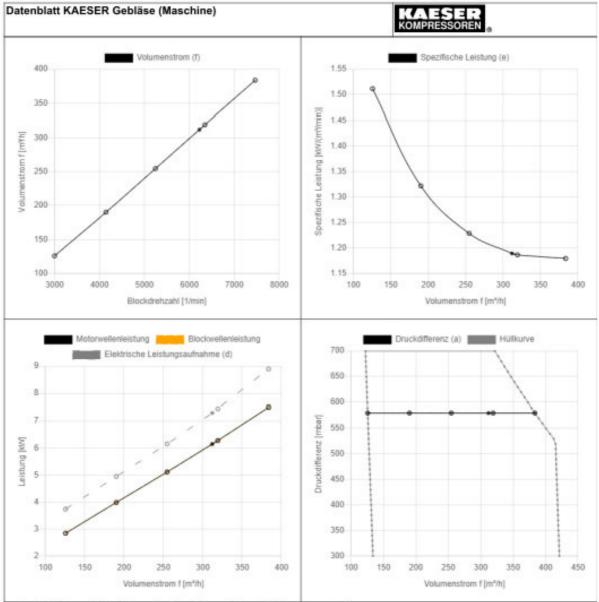
BETRIEBSDATEN - ISO 9906:2012 3B -					KONSTRUKTIONSEIGENSCHAFTEN					
Q [l/s]	H [m]	P [kW]	η (%)	NPSH [m]	Durchmesser Dr	80	and Andrew	mm		
10	8,5	10075000			Typ Laufrad	Offen zurückgesetzt				
					Trägheitsmoment		0,03431 Kgm²			
					Gewicht	Installation	94,5	26	Kg	
				1	Dichtung	Motorseite	Gleitringd	ichtung	Gleitringdic	
					Installationstyp		Vertikal	BAKF-A 2*		
				19	Betrieb		Dauerbetrieb (S1)		(S1)	

BETRIEBSGRENZEN	BETRIEBSEIGENSCHAFTEN				w. rook				
Pumpmedium Abwasser			Betriebsfördermenge			11,4		l/s	
Höchsttemperatur Pumpmedium	40	Betriebsförderhöhe			9.1		m		
Max. Dichte	1	kg/dm ³	H (Q=0) Hmax (Qmin)		0	12,4	m		
Max. Viskosität	1	mm²/s	Qmin	Qmax	70.50	0	28,7	l/s	
Max. Feststoffgehalt				aufnahme	Betriebspunkt	1,9		kW	
Höchstanzahl Anläufe/Stunde 20			Max. Leis	tungsaufna	hme	2,4		kW	
Freier Durchlauf	80	mm	η Pumpe	n des Ags	gregates	52,19	43,2	%	
Mindesttauchtiefe	315	mm	Drehrichtung (*)			Rechtslaufrad		ad	
WERKSTOFFE ELEKTROMO	FORDUMPE	W. W.	Zobi installanta Dunasa		In Funktion		Stand-by		
WERKSTOFFE ELEKTROMO	Zahl installierter Pumpen		1		0				
Druckgehäuse EN-GJL250			EIGENSCHAFTEN ELEKTROMOTOR						
Laufrad	EN-GJL250	EIGENSCHAFTEN ELEKTROMOTOK					(C)		
Mech. Dichtring pumpseitig	SIC/KERAMIK/NBR		Nennleistung		2,9		kW		
Flansch für Gleitringdichtung	EN-GJS400		Nennfrequenz		50		Hz		
Lagergehäuse	EN-GJL250	Nennspannung		400		V			
Öltrennkammer	EN-GJL250	Nennstrom		6,1		A			
Kabelverschraubung	AISI 304 (1.4301)		Polzahl	Drehza	ahl	4	144	1/min	
Motorgehäuse				Motortyp			3~	3~	
Stator Elektroblech			Wirkungsgrad 4/4-3/4-2/4 (**)			86,5 - 86,4 - 84,2 %			
Welle mit Läufer Rostfreier edelstahl/Elektroblech			Leistungsfaktor 4/4-3/4-2/4			0,795 - 0,710 - 0,580			
Leitfähigkeitsaufnehmer			Is/In Ts/Tn		6,6				
Ölschleuder	GRYVORY®	Thermoschutz		Klixon					
Mech. Dichtring motorseitig Keramik/Grafit			Isolationsklasse			Н			
Rundes Speisekabel	ndes Speisekabel -		Schutzart			IP68			
Schrauben und Muttern	A4		EX-geschützt		ATEX II 2G Exd IIB T4		IIB T4		
			Speiseka		Länge	NSSHOU-J	20	m	
			Effizienzk	lasse	S.F.	IE3		1	

Anm.:	(*) Ansicht Saugseite; (**) Leistungsmaß nach Norm IEC60034-2-1						
	ANGEBOT Nr. alt. A/00	Pos. 17.1	Datum 17.03.2025				
CAPRARI S.p.A. bet	alt sich das Racht vor, jederzeit und ahne Vorbeschold Änderungen zur Verbesserung der e	ogenen Produkte vorzunehmen Indikative Leistungen und Abm	ressurigen Copyright © 2018-2024 Caprant 8.p.A All Rig				

Seite. 5 / 5

© KEB 2025 Seite 23 von 28



2.5 BEMESSUNG SCHRAUBENGEBLÄSE UND BELÜFTERPLATTEN

SER Gebläse (Maschine)			KOM	PRESSOREN					
		4c8c9110								
Kontakt					timo.koch@kaeser.com					
Datum										
Projektbeschreibung KA Perkam; 2.500 EW					1					
Gebläse										
Betriebsart Überdruckbetrieb					Luft					
ante Kompone	nten									
✓Ansaugfilter G4 ✓Ansaugschalldämpfer ✓Schalldämmhau					 ✓ Frequezumrichter ✓ EMV Filter 					
etails	75		Optionen							
● Ra			100							
schine bei Netz	betrieb									
	3.7.7.7.7.7.7.1.1		6000							
			400							
			7.5 / 10.0							
			91.70							
			69 / 85.6							
		820								
ungen der Proz	essluft in die	Maschine	707							
1 [mbar]			974							
atur ð 1 [°C]			30.0							
			50.00							
Δp ^a [mbar]			580							
mbar]			1554							
he ü.NN [m]			333							
n bei Proiektber	dingunaen		200	Tyrine (*)		V				
		2 (V')	3 (V")	4 (V')	5 (V' max)	Auslegungspunk				
1/min	3000	4145	5246	6346	7466	6224				
m³/h	148	224	300	377	453	368				
m³/h	126	190	255	319	384	312				
The second secon	162	246	329	412	495	403				
kW	2.8	4.0	5.1	6.3	7.5	6.1				
kW	3.7	4.9	6.2	7.4	8.9	7.3				
17.4.8										
The second secon	1.51	1.32	1.23	1.19	1.18	11.19				
kW/(m³/min) %	1.51 53.67	1.32 61.37	1.23 66.04	1.19 68.39	1.18 68.81	1.19 68.23				
	eibung vante Kompone 64 dämpfer etails © Rai schine bei Netz Gebläse [1/min] etz [V/Ph/Hz] [V] Motor [kW/HP] Motor [%] v(A) [dB(A)] Sicherheitsventi ungen der Proz o 1 [mbar] etur θ 1 [°C] uchtigkeit φ [%] c Δp a [mbar] mbar] she ü.NN [m] n bei Projektbed 1/min m³/h kg/h	Überdruckber rante Komponenten 64 dămpfer impfer etails ® Raum O Rohr schine bei Netzbetrieb Gebläse [1/min] etz [V/Ph/Hz] [V] Motor [kW/HP] Motor [kW/HP] w(A) [dB(A)] sicherheitsventil pSV [mbar] ungen der Prozessluft in die o 1 [mbar] etur θ 1 [°C] uchtigkeit φ [%] Δp a [mbar] mbar] in bei Projektbedingungen 1 (V'min) 1/min 3000 m³/h 148 m³/h 126 kg/h 162	ibung KA Perkam; 2.500 EW Überdruckbetrieb Vante Komponenten S4	4c8c9110 Timo Koch @ 15.10.2024 timo.koch@ timo	4c8c9110 Timo Koch / Kaeser Kom timo.koch@kaeser.com 15.10.2024					

© KEB 2025 Seite 24 von 28

- a: Druckdifferenz Maschine zwischen Ein- und Austritt (Kompensator)
- b: Luftmassenstrom am Druckstutzen der Maschine, umgerechnet als nutzbarer Volumenstrom am Eintritt. Toleranz auf die Abweichung der Angebots- zu den Messdaten übereinstimmend mit ISO 1217 Annex C/E für Volumenströme bezogen auf Eintrittsbedingungen:
- 1.5-15 m3/min: ± 5 %, >15 m3/min: ± 4 %
- c: Unter Berücksichtigung der Druckverluste aller durchströmten Komponenten der Maschine
- d: Elektrische Leistungsaufnahme aller gewählten Komponenten unter Berücksichtigung der Druckverluste aller durchströmten Komponenten der Maschine
- e: Toleranz auf die Abweichung der Angebots- zu den Messdaten in Übereinstimmung mit ISO 1217 Annex C/E für die spezifische Leistung (P_{gesamt}/V): 1.5-15 m³/min: ± 6 %, >15 m³/min: ± 5 %
- f: DIN 1343: im physikal. Normzustand 1013mbar, 273 Kelvin, trockene Luft 0% r.L.F. (Vi.N.) US-Standard (CAGI): 1013mbar, 293 Kelvin, Luft 36% r.L.F. (V's)
- g: Austrittstemperatur (berechneter Wert)
- h: DIN EN ISO 2151 and ISO 9614-2, 1m Abstand, Toleranz ±3 db(A), mit schallisolierter Rohrleitung

i: berechnet aus P_{gesamt} und V' KAESER KOMPRESSOREN SE © 2024

v1.3.29

Seite 25 von 28 © KEB 2025

RUDOLF MESSNER UMWELTTECHNIK

Projekt: 09.10.2024 KA Perkam

> EW: 2.500

Auslegungsgrundlagen			Becken 1	Gesamt
Beckengeometrie			Kreis-Ring	
NAME OF TAXABLE PARTY OF TAXABLE PARTY.			1 312/36/10/50	
Außen-Ø Innen-Ø		m m	22,50 11,70	
Wassertefe		m	4,65	
Beckenoberfläche		m ^a	284	284
Beckenvolumen		m ^a	1.323	1.323
Ortshöhe ü.NN		m	333	000000
Auslegung:			B 90720 C 707200000	
Belüftertyp			V200-50M50R	207038
Belüfteranzahi		Stück	39	39
Belüterfläche		m ^a	39	39
eff. Belegungsgrad		%	13,71	
Einbauhöhe Einblastiefe		m m	0,05 4,60	
Rührwerke		m	nicht erforderlich	
Lastfall 1 Betrieb	FOTO	1-0.0	20.7	1200
Sauerstoffzufuhr in Reinwasser	SOTR ₁₀₈₀	kgO ₃ /h	23,7	23,7
spezifische Sauerstoffzufuhr	SSOTR	gO ₂ /m ² N-m _{ET}	30.0	
spezifische Sauerstoffausnutzung	SOTE SOTE	%imer gO ₂ /m² _{su} h	10.0	
Raumbelastung Belüfterbeaufschlagung		m ₁₉ /m ₂₈₀ /h	4.4	
Normiuftmenge 3)	Q LStant	m ₃ m ₂ m	172	172
Betriebsluftmenge ⁴	QLS	m*o/h	203	203
Systemdruck 1)	Ap	mbar	493	1000
Lastfall 2 Durchmis				
Saverstoffzufuhr in Reinwasser	SOTR	kgO ₂ /h	33.9	33.9
spezifische Sauerstoffzufuhr	SSOTR	gO ₂ /m ² _{le} m _{ert}	27.9	-
spezifische Sauerstoffausnutzung	SSOTE	%imer	9.3	
Raumbelastung	SOTR	gO ₂ /m ² _{na} h	25.6	
Belüfterbeaufschlagung	Q LOCAL	m¹ _W lm² _{Bob} h	6,8	
Normiuftmenge 2)	QLBI	m ^a _{re} fn	264	264
Betriebsluftmenge ⁴	Q LSt	m¹a/b	312	312
Systemdruck 1)	Δp	mbar	495	10000
Lastfall 3 Auslegun	g	I have a second a se		2,733
Sauerstoffzufuhr in Reinwasser	SOTR	kgO ₃ /h	38,3	38,3
spezifische Sauerstoffzufuhr	SSOTR	gO ₂ /m ³ N-m _{ET}	26,7	
spezifische Sauerstoffausnutzung	SSOTE	%Im _{EY}	8,9	I
Raumbelastung	SOTR	gO ₂ /m³ ₈₈ h	29.0	I
Belüfterbeaufschlagung	Q Listan	m ^a _{le} lm ^a _{ket} h m ^a _{le} lh	8,0	312
Normfultmenge ²⁾ Betriebsluftmenge ⁴⁾	Q _{LSt}	m _s _{th} p	368	312
Systemdruck 1)	Ap.	mbar	496	
	max / Lastfall			
Sauerstoffzufuhr in Reinwasser	SOTR	kgO ₂ /h	60.8	60,8
spezifische Sauerstoffzufuhr	SSOTR	gO ₂ /m³ _N m _{ET}	22.6	
spezifische Sauerstoffausnutzung	SSOTE	%/mgr	7.6	
Raumbelastung	SOTR	gO ₂ /m ² seh	46.0	
Belüfterbeaufschlagung	9 Lacest	m ² _{ry} lm ² _{bot} h	15,0	0.0000
Normluftmenge 2)	QLS	m³ _{re} fh	584	584
Betriebsluftmenge *	Q _{1,3t}	m ₃ mµ	689	689
Systemdruck 1)	Δp	mbar	505	
Gebläse			2,000	655208
Normiuftmenge ^(t)	Q _{1,81}	m³ _{re} lh	584	584
Betriebsluftmenge [©]	QLSt	m*o*h	689	689
Gebläsedruck	Δp	mber	580	

© KEB 2025 Seite 26 von 28

Toleranzen für Garantiewerte gemäß Merkblatt DWA-M 200

1) Druckwiderstand (Einblastiefe, Belüter und Anschlussleitung) im Neuzustand in Reinwasser

2) Ohne Beachtung eventueller Rührwerke

3) Normvolumenstrom: T=273 K, p=1,013 mbar, rF=0 %

4) Ansaugvolumenstrom: T=273+30 K, p=874 mbar, rF=50 %.

5) Grundlage für die Ermittlung der Garantiewerte

Obenstehende Abbildungen zeigen die Bemessung der beiden Schraubenkompressoren, sowie der Belüfterplatten.

2.6 BEMESSUNG SCHLAMMANFALL

Schlammanfall bei 2.500 EW

Gemäß Bemessung nach dem Arbeitsblatt DWA-A 131 mit Belebungs-Expert fällt eine Schlammenge von insgesamt 136 kg/d an (siehe Punkt 2.2, Lastfall 4 Sonderlastfall: Temperatur im Belebungsbecken 10° C).

$$\ddot{U}S_d = 136 \text{ kg/d}$$

Schlammanfall S bei 1,0% TS-Gehalt

$$S = 136 \text{ kg TS/d} / 10 \text{ kg/m}^3 = 13.6 \text{ m}^3/\text{d}$$

Momentan wird der anfallende Klärschlamm landwirtschaftlich verwertet. Zukünftig soll dieser jedoch beispielsweise zur Kläranlage Straubing abtransportiert werden.

Bei einer statischen Eindickung im Schlammsilo werden dabei etwa ca. 3,0 % Feststoffgehalt erreicht. Das dabei erforderlich Speichervolumen des Schlammsilos ermittelt sich dadurch wie folgt:

V_{erf} = 13,6 m³/d * 365 d/a * (1%/3%) = **1.655 m³/a** Grundsätzlich ist in zukünftig zusätzlich die Eindickung des Überschussschlammes über einen Scheibeneindicker geplant. Dadurch kann ein Feststoffgehalt von bis zu ca. 6,0 % erreicht werden. Dadurch erhält man folgendes Speichervolumen:

$$V_{erf} = 13.6 \text{ m}^3/\text{d} * 365 \text{ d/a} * (1\%/6\%) = 827 \text{ m}^3/\text{a}$$

Im Rahmen des Neubaus der Kläranlage Perkam ist ein Schlammsilo in Rundbauweise mit einem Durchmesser von 11,0 m und einem Speichervolumen von **415 m³** geplant. Die Nutztiefe beträgt ca. 4,5 m.

© KEB 2025 Seite 27 von 28

WASSERRECHTSVERFAHREN "Neubau Kläranlage Perkam" Gemeinde Perkam

Somit muss das Schlammsilo zukünftig zweimalig geleert werden, sofern die Scheibeneindickung ganzjährig in Betrieb ist. Anderweitig erhöhen sich die Abfuhrintervalle entsprechend.

Ein zweites Schlammsilo war im Rahmen der vorab erstellten Studie durch die SEHLHOFF GMBH 2020 geplant, war jedoch seitens des Auftraggebers und des Kanalnetzbetreibers nicht gewünscht. Es wurde die Variante mit der zusätzlichen Eindickung über einen Scheibeneindicker bevorzugt.

© KEB 2025 Seite 28 von 28